SYSTEMS MAPPING

The Systems Perspective

Adapted from G. Richardson, U of Albany

The majority of information exists in mental models Forrester 1991

Figure 4. Decreasing information content in moving from mental to written to numerical data bases.

Limits to Growth (Meadows et al 1972)

Collaborative Systems Modeling

Policy Sci (2009) 42:211–225 DOI 10.1007/s11077-009-9080-8

A fresh look at a policy sciences methodology: collaborative modeling for more effective policy

Kristan Cockerill · Lacy Daniel · Leonard Malczynski · Vincent Tidwell

Collaborative SD modeling Cockerill et al (2009)

- Include experts, public and/or stakeholders in model development and governance or policy choices considered
 - Consensus or dialogue tool
 - Enable structured dialogue among participants
 - Integrate scientific information, local knowledge, and values into the policy process
 - Develop a deeper level of understanding of system among participants
 - Increase agreement about root problems
 - Gain appreciation for uncertainty inherent in data and methods in studying complex systems
 - Personal Transformation "seeing problems and possible solutions in a new way"

A systems perspective

Focuses on patterns of behavior (not just specific events)

Focuses on policy structure (not just discrete decisions)

- Causal structure: "feedback" loops
- Delays
- Perceptions (a kind of accumulation)
- Pressures
- Affects, emotions, (ir)rationalities
- Stocks or Accumulations (populations, resources...)
- Allows for the integration of natural and social world variables

Causal Diagrams

"Ceteris paribus"...
All other influences held constant as we assign polarities.

- Causal mapping is a powerful tool for representing structure in complex systems.
- Arrows indicate causal influence.

Polarities of Causal Links

 Positive and negative signs show the direction of causality:

- + = "direct" relation
- **–** = "inverse" relation

Definitions of Link Polarities

 $\triangle A$ leads to $\triangle B$ in the same direction

 Δ C leads to Δ D in the *opposite* direction

All words phrases are expressed as *quantities* that have a clear sense of increase or decrease.

No verbs — the action is in the causal arrows.

Examples

More lawyers mean *more* litigation; fewer lawyers, less litigation

Emigration *subtracts* from population: An increase in emigration means less (a decrease means more) than we'd have without the change

"Ceteris paribus"...
All other influences held constant as we assign polarities.

Two kinds of feedback loops

Reinforcing loops

- growth producing
- destabilizing
- accelerating
- even number of –'s
- "positive" loops

Symbolized by

Balancing loops

- counteracting
- goal seeking
- stabilizing
- odd number of –'s
- "negative" loops

Symbolized by

Examples of Reinforcing Loops

Typical Reinforcing Loop Behaviors

World Population (billions)

Examples of Balancing Loops

Typical Balancing Loop Behaviors

Tips for Determining Link and Loop Polarities

- For each link, determine the effect of an increase in the variable at the tail of the arrow:
 - If the variable at the head increases, assign a plus.
 - If the variable at the head decreases, assign a minus.
- For each loop, count the number of negative signs:
 - An even number of negative links is a reinforcing (R) loop.
 - An odd number of negative links is a balancing (B) loop.
- Most important: For each loop, tell a story, and check that the story matches the loop polarity.

Example

S-shaped growth

Figure 4-8 S-shaped growth: structure and behavior

Sterman Business Dynamics 2000

Oscillation

Overshoot and collapse

FIGURE 4-12
Overshoot and collapse: structure and behavior

Sterman Business Dynamics 2000

Disadvantages

- Untraditional approach to policy analysis (not linear)
- Models can become complex fairly quickly
- Scoping of problem and determining model boundaries challenging
- Difficult to link up natural, social, behavior parameters with data or information

SD for public participation in environmental decisions

Policy lever interface

Collaborative Modeling

- "any method that brings together a multidisciplinary group and employs a 'model' to better understand key relationships in the system being studied"
- "models can range from simple diagrams of causal behavior to complicated computer-based simulations"

MAPPING TOOLS WITH FEWER "RULES"

Mind-mapping Guidance

adapted from Davies 2011

- Focus on topic
- Think of key elements and connect to central idea.
 - Do not judge or filter, or focus on accuracy at this stage
- Use images, colors, upper or lower case, etc. to develop your Mind
 Map
- Once most ideas on table—circle most important, move things if group desires, etc.
- Tell the story of your mind map in words

Another example

For today...

- Start with the things your group cares most about for the type of variable (health or eco risk/benefit, policy, economics, social/cultural) and the case study (human health, conservation, agriculture)
- Put that variable down as a starting point
- Think of any type of variable (influences) and the connections to your key variable (what you care about)

Mapping

- If your group wants, try causal mapping
 - Tell stories with your loops
 - Identify competing loops
 - Identify places where more information or data would be needed
 - Identify potential places for social mitigation of undesirable effects
 - Even identifying a couple of loops is great progress in two hours!
- If not, mental modeling is great too!

Example for gene drives • Pests and agriculture, sociocultural

