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A B S T R A C T   

Advances in sensing and computation have accelerated at unprecedented rates and scales, in turn creating new 
opportunities for natural resources managers to improve adaptive and predictive management practices by 
coupling large environmental datasets with machine learning (ML). Yet, to date, ML models often remain in-
accessible to managers working outside of academic research. To identify challenges preventing natural re-
sources managers from putting ML into practice more broadly, we convened a group of 23 stakeholders (i.e., 
applied researchers and practitioners) who model and analyze data collected from environmental and agri-
cultural systems. Workshop participants shared many barriers regarding their perceptions of, and experiences 
with, ML modeling. These barriers emphasized three main areas of concern: ML model transparency, availability 
of educational resources, and the role of process-based understanding in ML model development. Informed by 
workshop participant input, we offer recommendations on how the ecological modelling community can 
overcome key barriers preventing ML model use in natural resources management and advance the profession 
towards data-driven decision-making.   

1. From promise to practice 

“Machine learning” (ML) describes a class of algorithms that do not 
need to be explicitly programmed a priori and are highly effective at 
learning, and making predictions from, patterns in data (Goodfellow 
et al., 2016; LeCun et al., 2015; Thessen, 2016). Because these ap-
proaches are skilled at predicting complex responses from diverse data 
types, ML is increasingly relevant in the modern era, especially when 
advances in sensing and computation allow for the natural world to be 
observed at extraordinary rates and scales (Farley et al., 2018; Lausch 
et al., 2015; Rode et al., 2016). Despite overlap between ML models and 
classical statistical models, the motivations for applying these ap-
proaches differ. ML models typically focus on prediction, whereas 
classical statistical models emphasize hypothesis testing and un-
certainty quantification (Breiman, 2001; Donoho, 2017). As a result of 
these differences in motivation, ML models are well-suited to predict 
nuanced and nonlinear relationships from large, high-resolution data-
sets (Olden et al., 2008) while classical statistical models (e.g., linear 
regression) are well-suited to maximize information from small, care-
fully curated datasets (Hampton et al., 2013). As our capacity to 

observe the environment and use these observations for prediction 
grows, so will the role of ML models in natural resources management. 

Leading scientific organizations have promoted the promise of ML 
models to advance natural resources management by uncovering pat-
terns in large and diverse environmental datasets, and leveraging these 
relationships to expand and enhance predictive modeling capacity 
(NASEM, 2019, 2018; WEF, 2018). For example, the World Economic 
Forum’s 2018 report on Harnessing Artificial Intelligence for the Earth 
describes artificial intelligence as key for developing solutions to wide 
ranging societal challenges such as water availability, food security, 
and biodiversity conservation (WEF, 2018). Yet, despite growing ex-
citement about artificial intelligence and data science, applying ML 
models to explore environmental data and develop predictive decision- 
support tools remains a significant challenge for practitioners working 
in the natural sciences. Reported barriers to the use of ML models in-
clude data-specific challenges (e.g., bias, heterogeneity, size, missing 
observations), poor accessibility to computational tools and training, 
and limited knowledge transfer between data scientists, environmental 
scientists, natural resources managers, and policymakers (Faghmous 
and Kumar, 2014; Hampton et al., 2017; Kamilaris et al., 2017; 
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Thessen, 2016). Although the literature summarizes technical and 
training challenges hindering the adoption of ML models outside of the 
computational sciences (e.g., lack of interdisciplinary collaboration;  
Wagstaff, 2012), few articles offer specific recommendations for actions 
that may facilitate meaningful and responsible implementation of ML 
models for decision-making in natural resources contexts. 

In an effort to contribute meaningful guidance as to how researchers 
may increase the adoption of ML models in practice, we invited a group 
of 23 natural resource management practitioners and researchers to 
engage in a one-day, face-to-face stakeholder workshop in February 
2020, held at North Carolina State University in Raleigh, North 
Carolina (NC), USA. We invited stakeholders who represented a wide 
range of intersecting values, knowledge of ML models, sector expertise 
(i.e., water management, crop production, aquaculture, animal agri-
culture, air quality, and forestry), and organizations (i.e., federal and 
local government agencies, multinational companies, engineering 
consultancies, academia, cooperative extension). The stakeholder 
workshop was intended for preliminary information gathering (see 
workshop discussion questions in Table S1). The workshop was not 
intended to represent a statistically-significant group of stakeholders 
interested in using ML models for natural resources management. After 
the workshop, we synthesized responses and feedback from workshop 
participants and identified three key categories of barriers to ML model 
adoption: communication, educational resources, and synergies with 
process-based models. Based on these findings, we provide three re-
commendations for researchers who are considering using ML models 
or facilitating the use of ML models for natural resources management 
in practice. While the stakeholder workshop does not represent a sta-
tistically-significant group of stakeholders, we believe our key findings 
are nonetheless beneficial to researchers involved in applying ML 
models to natural resources management and communicating ML 
model results to decision makers. 

2. Recommendations to improve ml adoption   

1. Improve ML transparency and avoid framing ML models as 
“black boxes” 
Workshop participants expressed concerns that ML models may 
often be perceived as opaque and inscrutable, thereby preventing 
their use in practical decision making (e.g., public safety planning, 
regulatory agency permitting). More specifically, researchers often 
refer to ML models as “black boxes” because their structures and 
learned relationships are not as readily interpretable as differential 
equations and classical statistical models. Workshop participants 
also viewed the difficulties of interpreting ML model results as being 
further complicated by the current lack of consensus surrounding 
the definition and scope of ML. The overlap between ML modeling 
and classical statistical modeling was confusing to those outside the 
computational sciences. Without clear, consistent, and easy-to-un-
derstand descriptions of ML model structure and scope, stakeholders 
may view these approaches as too uncertain or risky for use as de-
cision-support tools in natural resource management. 
Given workshop participants’ concerns about the potential for ML 
modeling to have ill-defined scope and produce results that are 
difficult to interpret, we recommend the development of guidelines 
that work towards improving consensus in scientific messaging on 
the definition and scope of ML while also revisiting narratives that 
position ML models as “black boxes”. Descriptions of ML models as 
“black boxes” implies limited understanding of how their underlying 
algorithms operate. Though inspecting the inner workings of ML 
models requires additional effort, researchers, including those out-
side of computer and statistical sciences, have developed useful and 
effective approaches for examining ML models and casting light on 
their internal structures. For example, the Exploratory Data Analysis 
using Random Forests (edarf) R package (https://github.com/ 
zmjones/edarf), developed by political scientists, includes 

functions to explore features of random forest models such as pre-
dictor variable importance and partial relationships between pre-
dictor and response variables (Jones and Linder, 2015, 2016). Si-
milarly, the Connection Weights Approach to estimating predictor 
variable importance (Olden et al., 2004) and NeuralNetTools R 
package (Beck, 2018), developed by a conservation biologist, both 
facilitate interpretation of supervised neural network models. Ad-
ditionally, posterior analysis of ML model predictions using inter-
pretation algorithms such as Shapley values (Lundberg et al., 2020) 
or local interpretable model-agnostic explanations (LIME; Ribeiro 
et al., 2016) may improve trust in model outputs. However, not all 
ML model architectures are easy to explore. For example, deep 
neural networks, which have hundreds or thousands of middle 
layers, also referred to as “hidden layers” (LeCun et al., 2015; Shen, 
2018), are more difficult to interpret compared to simpler ML 
models with only a one or two middle layers (e.g., multilayer per-
ceptron neural networks). Continued advancement in tools that 
expose the inner workings of ML models may help improve trust in 
model predictions, thereby increasing the value of ML models for 
natural resources management research and practice. 
Open and participatory science practices that foster information 
transparency and co-development of research priorities between 
researchers and stakeholders may also help address concerns re-
garding ML models transparency. When applied across the entire 
research process (i.e., from formation of research question to pub-
lication of data and research findings), these practices strive to 
generate research products that are more inclusive, effective, 
transparent, reproducible, and discoverable to researchers and sta-
keholders (Bartling and Friesike, 2014; Hampton et al., 2015; 
Lowndes et al., 2017; Norström et al., 2020; Woelfle et al., 2011). 

2. Develop educational resources on the use of ML models, in-
cluding descriptive case studies from real-world contexts 
Workshop participants emphasized the need for educational mate-
rials and case studies on ML modeling that were relevant to natural 
resources management. While most workshop participants were 
aware of ML models, many were overwhelmed by the range of ML 
modeling options, dataset sizes, and computing needs. They asked 
for specific guidelines and training on technical topics including: 
data discovery and cleaning, data quality assurance and control, 
appropriate data requirements (e.g., temporal duration, percent 
dataset completeness), trusted open-source ML modeling tools, cri-
teria for selecting between various ML modeling approaches and 
advanced computing resources (e.g., in the form of flow charts), 
setting-up ML models to be run “in production”, interpretation of 
ML model outputs and model uncertainty, and limitations of ML 
modeling. They also asked for guidance on non-technical subjects, 
including what ethical considerations (e.g., data ownership and 
privacy, checking for model biases) to make when using ML models 
for prediction purposes, as well as how to communicate results to 
various levels of decision-makers, from the general public to elected 
officials and company leadership. 
Workshop participants had many recommendations for how re-
searchers could improve educational resources and accessibility of 
ML modeling approaches. In particular, workshop participants ad-
vocated for the development of case studies that were easy to follow 
and included model training, tuning, and testing protocols for non- 
experts making decisions at various spatial scales (e.g., field, region) 
and time scales (e.g., short-term/emergency, long-term planning). 
Their suggestion to develop case studies was made in light of the 
fact that many scientific articles presenting ML modeling applica-
tions in the natural sciences are written for ML model experts rather 
than new users. Therefore, we recommend researchers publishing 
ML modeling studies relevant to natural resources management 
consider expanding methods sections and/or supplementary mate-
rials to include summaries that contextualize, justify, and describe 
the use of ML modeling approaches in a way that is well suited for 
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new ML modelers. Additionally, case studies that provide guidance 
on how best to translate ML model architectures and outputs for 
decision-makers may be particularly helpful in improving ML 
adoption among practitioners. 
Currently, many examples demonstrating ML model training, 
tuning, and validation are presented in the context of software tools 
(e.g., R package vignettes); however, there is an opportunity to 
develop ML-specific case studies that go beyond software tool de-
velopment to improve communication and education strategies. 
Specifically, these strategies may help bridge the gaps between 
model predictions, model interpretations, and informed manage-
ment decisions. Importantly, the co-development of case studies and 
other educational materials by stakeholders and researchers is 
needed to ensure these materials meet the needs and interests of 
stakeholders. 

3. Provide guidance on how and when process-based under-
standing informs ML model architecture 

Given the widespread use and trust in established natural resources 
management methods that rely on process-based models, workshop 
participants expected to encounter resistance from support staff, lea-
dership, and decision-makers when initiating conversations about 
adopting ML models for natural resources management. They explained 
that this resistance likely stems from several barriers. First, workshop 
participants perceived new methods like ML models as more uncertain 
than process-based modeling standards, which are regarded as trusted 
decision-support tools because they encapsulate current knowledge and 
expertise on underlying processes driving ecological systems (Fatichi 
et al., 2016; Hipsey et al., 2015; NRC, 2007; Robson et al., 2008). 
Second, workshop participants noted their unfamiliarity with im-
plementing ML modeling (see Recommendation #2). Last, they were 
concerned that ML model results may be difficult to interpret (see Re-
commendation #1) or hinge on spurious relationships in the data that 
do not uphold process-based understanding of ecological system dy-
namics. 

Considering frequent preferences for process-based models and 
workshop participants’ concerns with ML models, we recommend the 
development of clear and easy-to-follow guidelines on how non-expert 
ML modelers can use their knowledge of process-based models to in-
form ML model development for natural resources management. 
Applications that bridge ML modeling and process-based modeling, 
such as theory- or process-guided ML modeling (Faghmous and Kumar, 
2014; Hanson et al., 2020; Karpatne et al., 2017; Read et al., 2019), 
present ML modeling in intuitive and defensible ways for model prac-
titioners. Moreover, ML models are well suited to address limitations of 
process-based models, such as reducing uncertainty in process-based 
model parameter estimates (e.g., Gentine et al., 2018) and improving 
process-based model prediction accuracy (e.g., Read et al., 2019). ML 
models may help identify novel patterns in environmental data, es-
tablish new working hypotheses of underlying mechanisms, and facil-
itate new field and process-based model experiments to test these hy-
potheses (Peters et al., 2014; Shen, 2018; Shen et al., 2018). Thus, when 
developing guidance and case studies demonstrating the utility and 
value of ML models (i.e., Recommendation #2), we recommend re-
searchers describe how process-level understanding influenced their ML 
modeling workflows and present ML models as complementary, not 
contradictory, to process-based models. Last, researchers may consider 
engaging in participatory research to address how process under-
standing informs ML model workflows (Norström et al., 2020). In this 
case, participatory research may lead to co-production of new modeling 
approaches and model-derived insights. 

3. Closing Remarks 

As researchers and professionals in the natural sciences apply in-
novative ML models to manage natural resources in increasingly diverse 

disciplines, a firm understanding of the goals, ethics, and interpreta-
tions of analytical outcomes will be essential. While our stakeholder 
workshop was designed for preliminary information gathering, we 
synthesized and shared important findings from the workshop to pro-
vide guidance and recommendations on how improvements in the field 
of ML can accelerate adoption of ML models for natural resources 
management. We call on researchers who already work at the inter-
section of environmental and data sciences to support initiatives that 
translate the utility of ML approaches to practitioners and, ultimately, 
advance predictive and adaptive management of natural resources 
through ML model applications. 
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