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A B S T R A C T   

Genetically engineered insects have gained attention as regionally deployed pest control technologies, with 
substantial applications in agriculture for combatting intractable crop pests and diseases. One potential tool is a 
‘gene drive’, using CRISPR-based gene editing. In gene drive, preferentially inherited, engineered traits are 
spread throughout a geographic area to reduce pest populations or inhibit disease transmission, while also 
potentially reducing pesticide use and crop prices. But the self-perpetuating nature of gene drives presents a 
consequence, in that consumers could eventually be limited to only host crops grown in the presence of these 
genetically engineered insects. In this study, we analyze potential consumer welfare impacts of these technol-
ogies using discrete choice experiment data from a representative sample of U.S. adults, examining preferences 
regarding gene drive use to control spotted wing drosophila in blueberries and Asian citrus psyllid in orange juice 
(OJ) production. We find smaller average discounts for gene drives versus increased conventional pesticide use 
or genetically modified crops. Only 27% and 25% of blueberry and OJ consumers, respectively, are estimated to 
derive disutility from gene drives. However, gene drive disutility for these consumers is so large that elimination 
of non-drive options from their choice sets results in negative (blueberries) or neutral (OJ) effects to aggregate 
consumer welfare when weighed against gains to other consumers from reduced prices. Positive welfare effects 
are recovered by retaining availability of non-gene-drive products. We argue that this type of analysis will be 
increasingly important as landscape-level biotechnologies are deployed to address challenges to agricultural 
sustainability.   

1. Introduction 

New types of biotechnologies are nearing deployment that have the 
potential to transform agricultural pest control, with important impli-
cations for consumer welfare. These biotechnologies – which may 
loosely be described as ‘engineered self-spreading biocontrol’ – are 
designed so that relatively small and short duration releases of a pest 
modified to carry desirable traits result in the permanent or semi- 
permanent spread of the organism through an agricultural region. 
Desirable traits could include decreased growth or survivability rates, 
altered host-plant preferences, enhanced susceptibility to pesticides, as 
well as disease inoculation (e.g. to prevent an insect-vectored plant 
disease). The two most developed examples of such biotechnologies are 
‘gene drives,’ which use genetic engineering to insert desirable traits 
along with modifications to promote their biased inheritance (Fig. 1), 
and Wolbachia, a bacterium that infects pests, reduces their fitness, and 

achieves preferential inheritance by modifying the host organism’s 
reproduction. Because of their intended scale and their non-chemical 
modes of action, these technologies have the potential to address some 
of the most pressing challenges to sustaining effective pest control in 
agricultural production (Oerke, 2006; Culliney, 2014), including 
increased pest pressure from climate change (Deutcsh et al. 2018), 
continued risks of invasive species spread (Paini et al., 2016), the 
environmental and human risks of pesticides (Larsen et al., 2017), as 
well as pesticide resistance (Gould et al., 2018). 

Some of these technologies are already having significant effects on 
preventing vector-borne diseases (Pinto et al., 2021). There has still 
been no commercial deployment in agriculture, although applications 
are currently under development (Yadav et al., 2023). Meanwhile, 
concerns have been raised about the risks of such large-scale manipu-
lation of ecosystems (NASEM, 2016; Kuzma, 2021), and previous 
research has shown that the public has concerns about these 
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technologies that may limit their acceptability in commercial agricul-
ture, depending on how they are deployed (Jones et al., 2019). An 
extensive previous literature also documents consumers’ decreased 
willingness to pay (WTP) for food produced using genetic engineering 
(GE) (Costa-Font, Gil and Traill, 2008; Frewer et al., 2011, 2013; Lusk, 
McFadden and Wilson, 2018). 

In this paper, we investigate a previously unconsidered consumer 
externality that could arise from these technologies, intended as they are 
to alter the agroecology of whole production systems. This externality 
comes from restrictions on consumer choice likely to result from large-
scale deployment. For example, gene drive insect pests released at one 
location would spread out over large growing areas across multiple 
farms, replacing the extant pest population with GE organisms. Once 
deployed, this GE presence would occur regardless of whether individ-
ual growers in the area wanted the technology. If successful and widely 
deployed, this would limit the ability to grow crops in the absence of 
gene drive insects. Consumers who prefer food produced without these 
GE technologies would therefore find it more difficult or costly to find 
such products.1 At the same time, were gene drive insect releases to 

prove effective at reducing pest damage, they could mitigate pest- 
induced food price increases, and could also offer a potential substi-
tute for intensive application of chemical pesticides. Evaluating the 
consumer welfare impacts of such a technology would thus require 
simultaneous consideration of these effects. 

This paper illustrates such a welfare analysis in two potential pro-
posed applications of gene drives: one to control the soft-fruit pest 
spotted wing drosophila and the other to control the Asian Citrus Psyllid, 
the insect vector for Citrus greening disease. We measured the distri-
bution of consumer preferences regarding the use of gene drives to 
control these pests in the production of fresh blueberries and orange 
juice. Because there still has been no commercial release of gene drives 
in agriculture, we measure preferences using stated choice experiments 
conducted on a probability-based representative sample of the US gen-
eral public. The choice experiments were part of a survey in which 
detailed information was provided to participants about the prospect of 
using gene drives to control pests of these products (Jones et al., 2019). 
Estimating an array of discrete choice econometric models using these 
data, we find robust and novel evidence that, on average, consumers 
exhibit a lower WTP for these products when gene drives were used. 
However, the reduction in WTP associated with gene drive insects is 
significantly smaller than the WTP reductions associated with higher 
insecticide spraying or genetic engineering of the plant itself. Moreover, 
the majority of consumers are estimated to have no disutility associated 
with gene drive use in these products. 

We then use these estimated preferences to evaluate the expected 
aggregate consumer welfare impact of gene drive releases for pest 
control in the production of these foods. In both cases, previous research 
has documented how recent pest invasion has resulted in significantly 

Fig. 1. Biased inheritance in gene drive (A) and potential for population spread (B). Note: Images created by the authors and present in a modified form in fielded 
survey to the public (see Supplementary Material for complete survey materials and wording). 

1 There is debate about whether consumers’ aversion to GE food, and by 
extension gene drives, should be accounted for in welfare analyses, since many 
researchers point out that consumers are frequently misinformed about the risks 
of these foods. However, this debate misses the fact that even well-informed 
consumers can have values-based reasons for avoiding such foods, e.g. based 
on cultural or religious grounds (Atalan-Helicke 2015). Our approach in this 
paper is to try and obtain well-informed preferences for foods produced using 
gene drives, and to use these preferences in welfare analysis. 
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increased pesticide use and higher prices paid by consumers (Moss et al. 
2014; Farnsworth, 2017). We use these documented estimates to 
construct gene drive release scenarios that produce complex changes to 
consumer choice sets, where gene drive insect releases mitigate in-
creases in pesticide use and product prices but also remove non-gene- 
drive alternatives from the choice set. We calculate the minimum pest- 
induced consumer price increase under which a choice-restricting 
gene drive release would improve aggregate consumer welfare. In the 
case of spotted wing drosophila damage in the production of fresh 
blueberries, pest-induced price increases of over 30% would be neces-
sary for a gene drive release to improve aggregate surplus for U.S. fresh 
blueberry consumers. In the case of a gene drive citrus psyllid aimed at 
eliminating citrus greening, disease-induced price increases of around 
15% would be necessary. Previous estimates of price increases from 
either pest/pathogen have not approached these levels. If the costs of the 
gene drive deployment were borne by producers and passed on to con-
sumer prices, then damage-induced price increases would need to be 
even higher for gene drives to improve aggregate welfare. 

This paper provides two novel contributions. First, it provides ex- 
ante estimates of potential consumer WTP effects of gene drive use in 
agriculture. This contribution builds on recent papers examining how 
consumers value other next-generation agricultural biotechnologies like 
gene editing of crops or animals (McFadden et al., 2021; Yang and 
Hobbs, 2020). However, gene drives have very distinct implications 
compared to gene edited crops, with the former designed to engineer 
whole ecological systems as opposed to individual (consumed) organ-
isms in the case of the latter. Our second contribution demonstrates how 
to conduct non-marginal welfare analysis for a suite of next-generation 
‘system-scale’ agricultural biotechnologies on the horizon (e.g. Kaur and 
Upadhyay, 2022; Pfeifer et al., 2022). This contribution includes char-
acterizing statistical uncertainty when analyzing aggregate consumer 
surplus effects of policy scenarios. This extension is still infrequent in the 
literature, which usually presents only point estimates of non-marginal 
welfare effects. Our use of a (now standard) hierarchical Bayes 
method for estimating the distribution of consumer preferences greatly 
facilitates the characterization of uncertainty. 

The rest of the paper proceeds as follows: In the next section we 
provide background on gene drives in agriculture and a brief overview 
of the consumer and regulatory context. The third section describes the 
choice experiment design, data collection, summary statistics, and 
qualitative patterns observed in consumers’ stated choices. We then 
describe the econometric methods used to obtain consumer welfare es-
timates, namely discrete choice modeling of heterogeneous consumer 
preferences. In the penultimate section, we present the consumer wel-
fare analysis of different policy scenarios regarding gene drive releases. 
The final section concludes by discussing the implications of our 
findings. 

2. Background on gene drive insects and two potential 
agricultural applications 

To understand the consumer implications of the technologies intro-
duced above, we first provide some background on how they work, how 
consumers might be impacted, as well as their regulatory context. 

2.1. How gene drives work, with examples 

There is a long history of using biocontrol techniques for managing 
invasive pest species in agriculture. One of the most prominent pre-
cursors to the technology we study is the sterile insect technique (SIT), 
which has had notable success in dealing with highly damaging pests for 
which no alternative control methods were available (Brown et al., 
2019). SIT works by continually releasing sterilized insects into the 
environment to mate with wild-type pests, reducing the reproduction 
rate of the population. While it can be highly effective, it can also be 
highly expensive, requiring the continual rearing and release of 

sterilized insects until the population is eliminated or the outbreak is 
halted. 

Recent innovations in biocontrol have introduced biological mech-
anisms that can sustain themselves and drive damage-reducing traits 
more permanently throughout a pest population after a much smaller 
initial release. These may include SIT-like traits that disrupt insect 
reproduction, or alternatively traits that could inoculate a disease vector 
from being able to transmit a damaging crop disease. The intention 
among developers is that these self-spreading mechanisms could 
dramatically improve the efficiency and sustainability of biocontrol as 
compared to SIT, by reducing the duration of modified insect releases 
needed to achieve pest elimination (Brown et al., 2019). 

In this paper, we focus on a particular form of self-spreading 
biocontrol known as a ‘gene drive’ (Barrangou, 2014; NASEM, 2016). 
Gene drives work by engineering a parent insect to spread genetic ele-
ments to offspring at frequencies that are greater than the usual ‘Men-
delian’ inheritance rate of 50%. Among their offspring, genes for 
engineered traits are copied from one parent’s chromosome to the other, 
meaning the (now ‘homozygous’) surviving offspring will also go on to 
produce young who express these traits at very high rates. This mech-
anism allows desired genetic traits to spread rapidly within a 
population.2 

While no gene drive pest has been released in the environment to 
date, researchers have actively pursued this strategy for some time and 
are making rapid progress. Much of this work has been primarily in the 
public health realm, targeting mosquito vectors of malaria (Hammond 
et al. 2021). Agricultural applications are farther behind, although 
multiple university research groups and private companies are now 
making more rapid progress (O’Brochta and Akbari, 2022; Scott et al., 
2018; Yadav et al., 2023; https://biocentis.com/). We discuss two spe-
cific agricultural examples that were some of the very first attempts in 
the agricultural space and the specific drive designs required for each 
provide the context we focus on for the remainder of the paper. The first 
was an early attempt to use a type of gene drive to control Huan-
glongbing, or citrus greening, a bacterial disease (Candidatus liberibacter 
spp.) which has devastated the $3.3 billion U.S. citrus industry with 
declines of 21.5% in Florida bearing acreage and 25.8% in yield since 
the disease was found in 2005 (USDA-NASS, 2017a). The bacterium is 
vectored by the Asian citrus psyllid, an invasive species from East Asia. 
The proposed gene drive, funded by a grant from the US Department of 
Agriculture (Turpin et al., 2012), would have spread a strain of the citrus 
psyllid that is no longer able to transmit the bacterium. This type of gene 
drive is referred to as a replacement drive, in which genetic modifications 
permeate through an insect population over time and leave an altered 
version of the pest species that remains in the environment. This early 
attempt failed for technical reasons, but there has been recent interest in 
renewing those efforts (Chaverra-Rodriguez et al., 2020). 

In another ongoing pursuit, researchers funded by the USDA (Li and 
Scott, 2016; Yadav et al., 2023), and separately by grower associations 
(Buchman et al., 2018), are seeking to design a suppression drive for 
spotted wing drosophila. Spotted wing is an invasive species in the United 
States that dramatically increases control costs (typically through spray-
ing) and causes extensive damage to ripening berry and cherry crops 
worth over $4 billion in 2016 (Asplen et al., 2015; USDA-NASS, 2017b; 

2 In more technical terms: with natural Mendelian inheritance, when a GE 
insect homozygous for the engineered trait mates with a non-GE individual, the 
offspring will be heterozygous, harboring the GE trait on only one of its two 
chromosomes. With a gene drive, gene editing tools are coupled with the 
engineered trait in the germline cells of the pest. The result is that the target 
trait is copied from the GE parent’s chromosome in the offspring over to the 
non-GE parent’s chromosome, producing offspring which are homozygous for 
the trait. Those offspring then go on to mate and produce offspring which are 
again homozygous… and so one until the target trait spreads completely 
through the pest population. 
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Fan et al., 2020). Where the suppression drive spreads, a trait could be 
passed that inhibits reproduction of the pest, leading to eventual popu-
lation collapse (Burt, 2003). A suppression drive would leave GE variants 
of the insect in the environment for some extended period, but potentially 
these too would dissipate in the long run in the event of a ‘successful’ 
population collapse. Given these first investments in gene drive target 
pests, we focus our analysis on fresh blueberries and orange juice to 
provide the most relevant data to inform the current debate. 

2.2. How agricultural gene drives may impact consumers 

A system designed for self-spreading GE traits in food production 
would naturally be expected to raise concerns among the public, as well as 
among growers concerned that consumers might react negatively to the 
technology. Public views on gene drives are also likely to be related but 
also distinct from views towards genetically modified organisms (GMOs) 
in food supplies (Costa-Font, Gil and Traill, 2008; Baltzegar et al., 2018). 
However, the genetic manipulation of pests instead of crops themselves 
may in fact reduce consumer apprehension. A survey by McFadden et al. 
(2021), for example, found that a plurality of consumers stated support 
for ‘gene-edited’ citrus trees or a ‘gene-edited’ citrus psyllid to control 
citrus greening and did not demonstrate statistically significant prefer-
ences for citrus produced through either method. However, the inten-
tional – and potentially uncontrolled – spreading of genetic modifications 
through pest populations via gene drives, rather than (somewhat) field- 
isolated genetically modified material in GE crops, may increase public 
concern. This sentiment has been expressed by gene drive researchers and 
evaluators (NASEM, 2016). In a prior analysis of attitudinal data from the 
same survey we use here (Jones et al., 2019), we found that the general 
US public was relatively supportive of pursuing gene drive research in 
agricultural applications after being informed about the risks and benefits 
of the technology and as long as safeguards were included to limit the 
uncontrolled spread of the technology (which is more difficult to design 
from a bioengineering perspective). 

Gene drive insects also have a high potential to cause structural 
changes in product availability. The goal to spread GE traits throughout 
the pest population may actually be achieved, meaning that in the me-
dium- or long-term GE insects could replace their wild counterparts 
wherever that population is present. Consumers who prefer to purchase 
a certain food product not grown in the presence of gene drive insects 
may eventually no longer be able to find such products for sale. Changes 
in product availability induced by technological change are not a new 
phenomenon, but we argue there is amplified potential for such changes 
from a technology that is designed to spread and permanently establish 
itself across agricultural landscapes. From a consumer welfare 
perspective, some consumers are likely to view the removal of non-drive 
products from the choice set more negatively than others. Consumers 
who do not have any disutility from foods produced using gene drives 
would unambiguously gain if gene drives prevented pest-related price 
increases and substituted for less desirable forms of pest control. Our 
question in this paper is how disutility from gene drive insect presence 
compares in the aggregate to the utility of reduced chemical spraying 

and consumer prices. 

2.3. How agricultural gene drives are likely to be regulated in the US 

From a regulatory perspective, all substantive gene drive pursuits in 
agriculture involve genetic engineering and the insertion of foreign 
genetic material into insect pests. This means that their regulation in the 
US would be addressed within the Coordinated Framework on the 
Regulation of Biotechnology, which divides regulatory authority among 
the USDA, the EPA, and the FDA based on existing statutes. GE insect 
pests of plants and animals fall under the regulatory authority of the 
Animal and Plant Health Inspection Service (APHIS) within USDA, 
which handles permitting and regulation of movement into and within 
the United States under the authority of the Federal Plant Pest Act 
(FPPA) and the Virus-Serum-Toxin Act (VSTA). 

Food labeling regulations administered by the USDA are also perti-
nent for gene drive insects. These include the organic label administered 
by the National Organic Program (NOP) and the National Bioengineered 
Food Disclosure Standard (NBFDS). Under 7 CFR Part 205, the NOP 
outlines prohibitions including transgenic (inserting a foreign gene, e.g. 
‘Bt’ crops) or non-transgenic gene editing methods3: 

“Excluded methods: A variety of methods used to genetically modify 
organisms or influence their growth and development by means that are 
not possible under natural conditions or processes and are not considered 
compatible with organic production. Such methods include cell fusion, 
microencapsulation and macroencapsulation, and recombinant DNA 
technology (including gene deletion, gene doubling, introducing a foreign 
gene, and changing the positions of genes when achieved by recombinant 
DNA technology). Such methods do not include the use of traditional 
breeding, conjugation, fermentation, hybridization, in vitro fertilization, 
or tissue culture.” 
— 7 CFR §205.2; 
Allowed and prohibited substances, methods, and ingredients in organic 
production and handling: To be sold or labeled as “100 percent organic,” 
“organic,” or “made with organic (specified ingredients or food group 
(s)),” the product must be produced and handled without the use of […] 
excluded methods, except for vaccines 
— 7 CFR §205.105 

It remains to be seen how these labeling requirements will apply to 
gene drive insects since no commercial agricultural deployments have 
yet been made. While the NOP prohibits the use of GE technology in 
producing foods carrying the organic label, the adventitious presence of 
GE technology would likely not jeopardize a farm’s organic certification. 
This may include the presence of gene drive insects deployed by other 
conventional farms which then spread onto organically certified farms. 
Policy memos from the NOP have detailed responses to questions about 
incidental adventitious presence of genetically modified material: 

Table 1 
Choice experiment attributes and levels.  

Attributes Levels 

Gene Drive Insects Present in the growing area to control pest damage; 
Not present in the growing area 

Plant Type Genetically modified to resist pest damage; 
Not genetically modified 

Pest Management Regime USDA-Organic [seal shown]*; Low Conventional Spray Level; High Conventional Spray Level 
Price  

Fresh Blueberries ($/pint) 1.06; 2.12; 4.25; 5.31 
Orange Juice ($/half-gallon) 2.95; 4.07; 5.21; 6.34  

* Due to USDA-organic regulations, to keep the choice tasks realistic, the organic attribute was restricted to never appear in the same attribute set as a GM plant. 

3 https://www.ecfr.gov/current/title-7/subtitle-B/chapter-I/subchapter-M 
/part-205 (Accessed July 21, 2023). 

M.S. Jones and Z.S. Brown                                                                                                                                                                                                                   

https://www.ecfr.gov/current/title-7/subtitle-B/chapter-I/subchapter-M/part-205
https://www.ecfr.gov/current/title-7/subtitle-B/chapter-I/subchapter-M/part-205


Food Policy 121 (2023) 102529

5

“The NOP regulations prohibit the use of excluded methods (i.e., 
“GMOs”) in organic operations. If all aspects of the organic production or 
handling process were followed correctly, then the presence of a detectable 
residue from a genetically modified organism alone does not constitute a 
violation of this regulation… As long as an organic operation has not used 
excluded methods and takes reasonable steps to avoid contact with the 
products of excluded methods as detailed in their approved organic system 
plan, the unintentional presence of the products of excluded methods 
should not affect the status of the organic operation or its organic prod-
ucts” (McEnvoy, 2011). 

What is more ambiguous is whether an organic farm was, for 
example, a member of a grower association that supported the release of 
gene drive insects in the area from which the organic farm benefitted (as 
noted by Reeves and Phillipson, 2017). However, regarding the NBFDS, 
foods produced using gene drives would almost certainly be exempt 
from carrying the ‘Bioengineered’ label, because any incidental gene 
drive insect material on the food product through adventitious presence 
would constitute such a small portion of the food’s ingredients (signif-
icantly less than the 5% threshold under the regulation). 

3. Survey and choice experiment description 

In this study, we employ a discrete choice experiment (DCE) to 
investigate consumer responses to gene drive insect use in area-wide 
pest management regimes. We use the DCE approach for two reasons. 
First, because no foods have yet been produced using gene drive insects, 
a revealed preference elicitation method such as experimental auctions 
is not feasible (barring the use of deception). Second, DCEs are shown to 
have design advantages over other stated preference methods, such as 
contingent valuation, by more closely simulating a real purchasing 
scenario (Lusk and Hudson, 2004). 

The DCE was embedded within a larger web-based survey fielded in 
October and November 2017 through the survey firm GfK’s Knowledge-
Panel®, a representative probability sample of U.S. adults, which resulted 
in 1,018 completed questionnaires. All respondents received a basic 
explanation of gene drive technology, illustrations of the citrus psyllid and 
spotted-wing Drosophila applications described above and selected from 
seven frequently asked questions (full wording in Supplementary Mate-
rial, SM). Respondents who failed inattention and speeding tests were 
removed from the sample based on an agreement between the researchers 
and the survey sample provider, and are not included in the reported 
1,018-person sample size (see Jones et al., 2019 for details). 

Respondents then reported attitudes on various contexts of gene 
drives for agricultural pest control and specific views on use in organic 
agriculture, which are summarized by Jones et al. (2019). That study did 
not analyze data from the DCE, which was only completed by re-
spondents whose households purchased fresh blueberries or OJ in the 
last six months. From 1,018 total survey respondents, we draw WTP data 
from 457 fresh blueberry consumers and 408 OJ consumers who 
completed the DCE. Respondents purchasing both products were ran-
domized to only one DCE exercise.4 Following convention to reduce 
potential hypothetical bias in WTP estimates, a cheap talk script was 
adopted in the DCE introduction (Cummings and Taylor, 1999; Lusk, 
2003) and a consequentiality statement was included at the beginning of 
the survey (Herriges et al., 2010).5 

For both products, the DCE included attributes of price, gene drive 
insect presence in the growing area, crop genetic modification to resist 
pests, and varied traditional pest management regimes, which include a 
high conventional spray level, low conventional spray level, and the 
USDA-organic seal.6 Product attributes and corresponding levels are 

Table 2 
Summary of consumer behavioral and attitudinal patterns.   

Fresh 
Blueberries 

Orange Juice 

Number of respondents 457 408 
Choice tasks per respondent 9 9 
Fraction of applicable tasks in which…   
Cheapest product purchased 0.511 0.477  

(0.482, 0.539) (0.448, 0.506) 
Organic purchased 0.563 0.412  

(0.535, 0.592) (0.384, 0.440) 
Product using gene drive purchased 0.426 0.411  

(0.402, 0.450) (0.386, 0.437) 
Product using GM plant purchased 0.302 0.344  

(0.277, 0.328) (0.313, 0.374) 
No product purchased 0.272 0.302  

(0.246, 0.297) (0.273, 0.331) 
Fraction of respondents who…   
Regularly buy USDA-certified organic foods 0.283 0.195  

(0.241, 0.325) (0.156, 0.235) 
Seek “non-GMO”-labeled foods 0.236 0.201  

(0.196, 0.276) (0.161, 0.240) 
Oppose gene drives in agriculture 0.118 0.140  

(0.0885, 0.148) (0.106, 0.173) 
In choice experiment…   
Always purchased a product 0.348 0.343  

(0.304, 0.392) (0.297, 0.389) 
Never purchased a product 0.0328 0.0368  

(0.0164, 
0.0492) 

(0.0184, 
0.0551) 

Always purchased cheapest product 0.131 0.140  
(0.100, 0.162) (0.106, 0.173) 

Always purchased organic 0.177 0.103  
(0.142, 0.212) (0.0733, 0.133) 

Never purchased product with high pest 
spraying 

0.348 0.343  

(0.304, 0.392) (0.297, 0.389) 
Never purchased product using GM plants 0.328 0.292  

(0.285, 0.371) (0.247, 0.336) 
Never purchased product using gene drives 0.149 0.142  

(0.116, 0.182) (0.108, 0.176) 
Oppose pursuit of gene drives but chose 

product 
0.0635 0.0956  

(0.0410, 
0.0859) 

(0.0669, 0.124) 

95% confidence intervals for mean in parentheses, using asymptotic standard 
errors clustered by respondent. Respondents only completed one DCE: blue-
berries or OJ. 

4 In the case of households purchasing both products in the last six months, 
respondents were randomized at a ratio of 2:1 to the blueberry (v. orange juice) 
DCE. This is based on pretesting in Amazon MechanicalTurk (n=300, within 
US), which is “a crowdsourcing marketplace enabling individuals and busi-
nesses (known as Requesters) to engage a 24/7, global distributed workforce 
(known as Workers) to perform tasks” (Amazon). Pretesting indicated more 
frequent sole consumption of orange juice vs. blueberries and a desire to ach-
ieve roughly equivalent DCE sub-sample sizes. Consumption of blueberries was 
somewhat higher in the GfK sample than the Amazon MechanicalTurk pretest 
sample.  

5 Cheap talk script within the DCE introduction: “When making your choices, 
please consider the price of the product carefully compared to your household’s 
grocery budget. (In questions about hypothetical purchase choices, people often 
tend to overstate their willingness to purchase some products.)”.  

6 In principle, we could have also included multiple spray levels within 
organic products in the DCE. However, as opposed to conventional production, 
more frequent spraying by organic growers is not a realistic or effective 
response to these pests, since organic pesticide options and effectiveness are 
much more limited. Indeed, previous research that we discuss in detail later has 
shown that price increases in organic fresh blueberries owing to Spotted wing 
damage have remained elevated (whether through increased costs, losses, or 
diverted supplies to conventional markets due to expanded spray needs). In 
contrast, pest-induced price impacts for conventional blueberries eventually 
subsided as growers adapted (primarily by more intensive chemical applica-
tions). For the purposes of both parsimony and realism in the DCE design, we 
therefore omitted multiple spray levels in the organic attribute level. 
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outlined in Table 1. Respondents were instructed to imagine they are 
making a regular shopping trip in a grocery store and indicate which of 
two options, if any, they would purchase. A D-efficient design powered 
to estimate main effects and interaction between gene drive insect 
presence and other current pest management practices was generated 
and fielded to a pretest sample via Amazon MechanicalTurk (n = 300) to 
refine and validate the instrument. Given current organic regulations, 
we excluded the possibility of a genetically modified plant appearing in 
the same alternative as the USDA-organic seal to keep choices realistic. 
In contrast, we allowed organic certification to coappear with the use of 
gene drives in the same product, which was theoretically possible within 
USDA regulations at the time of the survey. Estimated coefficients from 
pretest models were used to generate more efficient, unique designs for 
each product for the main round (Ferrini and Scarpa, 2007), which 
yielded a total of 18 choice tasks. These were optimally blocked into two 
groups of nine choice sets for each respondent to avoid survey fatigue. 
See SM section 2.1 for details. 

Table 2 summarizes the choice patterns from both the blueberry and 
OJ choice experiments.7 The statistics in this table are selected to exhibit 
the variety of choice patterns observed in these simulated purchasing 
scenarios. On roughly half of choice occasions, consumers chose the 
cheapest product in the choice set, although only 13–14% always chose 
the cheapest alternative. A sizable group of consumers showed a clear 
desire for the products in both experiments: Thirty-four percent of both 
blueberry and OJ consumers never selected the opt-out ‘no product’ 
alternative in the choice experiment. Blueberry consumers chose an 
organic product in a little over half (56%) of choice occasions, whereas 
OJ consumers chose organic in a minority (41%) of choice occasions. 
Products using gene drives appear generally more preferred than those 
involving GM plants or high levels of conventional pesticide spraying. 

Based on these descriptive statistics, the data appear well-suited for 
econometric demand estimation. First, they show clear and predictable 
responsiveness to price, as well as to all the production attributes 
considered in the DCE. Second, it does not appear that any of the at-
tributes were dominating, dominated or lexicographic for a majority of 
consumers, which would have invalidated the use of the conventional 
random utility framework we use in the econometric analysis presented 
below. Although measurable portions of consumers demonstrated clear 
choice patterns for the cheapest product available or for organic or non- 
GMO (non-gene-drive) products, the evident heterogeneity and diversity 
in these choice patterns can still be accommodated in appropriately 
specified random utility models as we show below. 

4. Econometric analysis 

To obtain welfare estimates, we first use the DCE data to estimate a 
random utility model (RUM) allowing for unobserved heterogeneity in 
consumer tastes. We then use this estimated model to compute aggre-
gate consumer surplus for a set of different policy scenarios which we 
detail in the next section. 

For the RUM, the utility of product j on choice occasion t for indi-
vidual i is assumed to be linear in the product’s attribute vector Xjt and 
an unobserved random utility component εijt: 

Uijt = β′
iXjt + εijt (1)  

where βi is the vector of individual-specific marginal utilities associated 
with the attributes Xjt. For our application, the vector Xjt is given by all 
of the attributes in Table 1, with the addition of an opt-out, ‘no purchase’ 
alternative-specific constant (ASC) and interaction terms between gene 

drive insects and organically-certified or low-spray products: 

Xjt= [GMjt,GDjt, orgjt, losprayjt, nobuyjt, pricejt
]

(2)  

where GMjt ,GDjt , orgjt , and losprayjt are binary indicators for whether 
alternative j in task t was respectively produced with GM plants, gene 
drive (GD) insects, under USDA organic certification, or with a low level 
pesticide spraying (‘low’ v. ‘high’ spray levels, the latter being the 
default level of the spray attribute, were defined in detail for re-
spondents in the survey; see Table 1 notes). The binary variable nobuyjt 

indicates whether alternative j is the opt-out, no-purchase alternative. 
Because the DCE was designed and powered to also test interaction ef-
fects between GDs and organic/low-spray attributes, we also extensively 
tested model specifications including GDjt × orgjt ,GDjt × losprayjt in Xjt. 
However, in all the correlated random coefficients models, these inter-
action effects are statistically indistinguishable from zero (see SM Table 
S6). For parsimony, we therefore use (2) as our main specification in the 

Table 3 
WTP (USD) estimates from the discrete choice experiment – Blueberries (see 
equations 1–4).   

Mean 
[95% posterior] 

Median 
[95% posterior] 

Fraction WTP = 0 
[95% posterior] 

GM Plant -6.1 -0.32 0.47 
(v. not GM) [-9.3, -4.0] [-0.99, 0] [0.38, 0.57] 
GD Insects -4.4 0.00 0.73 
(v. none) [-7.4, -2.5] [0, 0] [0.65, 0.79] 
Organic 7.4 0.61 0.44 
(v. Conv. High Spray) [5.1, 11] [0, 1.4] [0.36, 0.52] 
Conv. Low Spray 4.5 0.24 0.47 
(v. Conv. High Spray) [ 2.9, 6.9] [0, 0.84] [0.35, 0.59] 
No-buy opt-out -0.63 -3.9 0  

[-2.9, 2.7] [-4.5, -3.6] – 
Total choice tasks 4,113 
Total decisionmakers 457 
Degrees of freedom 27 
Log-likelihood -2,840 
Pseudo-R2 0.37 

Notes: Model estimates for mixed logit model with price coefficient distributed 
lognormally; GM Plant, GD Insects, Organic, and Conv. Low Spray coefficients 
distributed according to truncated normal distribution (with mass at β = 0), 
with correlation permitted between all random coefficients. Model estimated via 
Hierarchical Bayes method (Train 2009). Estimation based on 10,000 draws 
from the posterior distribution, after burn-in. See Supplementary Material for 
further technical specification and alternative model comparisons. Reported 
point estimates of WTP statistics are posterior distribution means; [95% poste-
rior] refers to 95% interval of posterior distribution of these statistics.  

Table 4 
WTP (USD) estimates from the discrete choice experiment – Orange Juice.   

Mean 
[95% posterior] 

Median 
[95% posterior] 

Fraction WTP = 0 
[95% posterior] 

GM Plant -4.7 0 0.62 
(v. not GM) [-8, -2.8] [0, 0] [0.53, 0.71] 
GD Insects -2.76 0 0.75 
(v. none) [-4.8, -1.5] [0, 0] [0.67, 0.83] 
Organic 5.3 0.52 0.43 
(v. Conv. High Spray) [3.6, 7.7] [0, 1.1] [0.35, 0.52] 
Conv. Low Spray 3.8 0.21 0.47 
(v. Conv. High Spray) [2.5, 5.7] [0, 0.73] [0.37, 0.58] 
No-buy opt-out -3.2 -4.9 0.00  

[-4.8, -0.9] [ -5.37, -4.5]  
Total choice tasks 3,672 
Total decisionmakers 408 
Degrees of freedom 27 
Log-likelihood -2,621 
Pseudo-R2 0.35 

Note: See notes for Table 3. 

7 Not reported in the table are the response time statistics for the DCE: Me-
dian completion time for the nine choice tasks was 3:22 min; the first and 99th 
percentiles of completion time were 40 s and 44:30 min respectively, with an 
interquartile range of [2:18, 4:48] minutes. 
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manuscript (and the policy analysis that comes later); however, when 
presenting RUM results in the next section, we also refer to results 
regarding these interaction effects presented in SM. 

Imposing the conventional assumption that εijt are i.i.d. draws from a 
standardized Gumbel distribution, the probability that individual i se-
lects product j on choice occasion t is given by: 

Pjt(βi) =
exp

{
β′

iXjt
}

∑
k∈texp

{
β′

iXkt
} (3) 

Preference heterogeneity is incorporated into this model by allowing 
the βi to vary between individuals. In general, we assume this hetero-
geneity is unobserved, and that βi is distributed i.i.d. according to a 
multivariate probability density function (pdf) f(βi|Ω), where Ω is a 
vector of parameters governing the distribution (e.g. a mean and 
covariance matrix if f(⋅) is multivariate normal). Given Ω, the expected 
likelihood that individual i makes a sequence of choices ji,1,⋯, ji,T across 
choice occasions t = 1,⋯,T is given by: 

li(Ω) = E

[
∏T

t=1
Pji,t t(βi)|Ω

]

=

∫ ∏T

t=1
Pji,t t(βi)f (βi|Ω)dβi (4) 

Depending on the specification of f(⋅), this integral may be computed 
analytically or using numerical simulation, and is amenable to estima-
tion of Ω using either maximum likelihood estimation (MLE) or using 
Bayesian methods. 

We employ a variety of alternative assumptions about the distribu-
tion of preferences as reflected in different functional forms for the 
mixing distribution f(⋅). In SM section 3, we detail extensive specifica-
tion testing regarding the form of f(⋅). In summary, we evaluated mixed 
logit models with uncorrelated and correlated multivariate normal, 
lognormal, truncated, triangular and skewed mixing distributions; latent 
class models with up to 10 classes; so-called ‘2K’ latent class models 
evaluating attribute non-attendance (ANA) (Hensher and Greene, 
2010); as well as recently developed ‘logit mixed logit’ models with 
flexible mixing distributions (Train, 2016). Results summarizing these 
model evaluations are in SM Table S2. 

Based on measurements and comparisons of model fit and parsimony 
(Bayesian and Akaike information criteria), our preferred specification 
is a mixed logit model in which the GM plant and GD insect marginal 
utilities are distributed according to an upper-tail zero-truncated normal 
distribution (with positive mass at zero), the organic and low-spray 
marginal utilities are distributed as lower-tail zero-truncated normal 
distributions, the no-purchase ASC distributed normally, the marginal 
utility of price distributed lognormally, and the interaction terms’ util-
ities fixed. Correlation is permitted and estimated among all heteroge-
neously distributed utilities; in specification testing, allowing for this 
correlation was the most impactful factor in improving model 
performance. 

The use of truncated normal distributions for the production-related 
attributes in our best-performing model was selected for evaluation on 
theoretical grounds: Truncated normals with probability mass at zero 
allow for a portion of consumers to have zero marginal utility associated 
with a given attribute. For those with non-zero utility, this distribution 
restricts these utilities to be positive (left-tail truncation) or negative 
(right-tail truncation). Our specification therefore rules out the possi-
bility that consumers have positive marginal utilities directly owing to 
GM plants or gene drives (rather than just lower prices or spraying 
resulting from these products), or negative marginal utilities owing to 
organic and low-spray production systems. Further, by permitting a 
positive probability of consumers having marginal utilities of zero, this 
mixed logit specification also facilitates the simultaneous study of 
possible ANA in the choice experiments; this is explored in detail in SM 
section 5 (Balcombe et al., 2011). 

To estimate our preferred specification, we perform now-standard 
hierarchical Bayes estimation (HBE) assuming a noninformative prior 

distribution (Train, 2009). We interpret results from this estimation 
method from a classical perspective: Since HBE of mixed logit with an 
uninformative prior is asymptotically equivalent to classical MLE, our 
use of HBE is driven first by the difficulty we encountered in getting the 
MLE of this mixed logit specification to converge. The second reason we 
employ HBE is that it greatly facilitates characterization of statistical 
precision in the welfare analysis because HBE produces both posterior 
distribution draws of the model parameters Ω (in our specification, the 
mean vector and covariance matrix of a multivariate normal distribu-
tion) and draws of the marginal utilities βi. This advantage is illustrated 
in more detail in the policy analysis section later in the paper. Technical 
details about our implementation of HBE and comparison to MLE results 
of the same RUM (the two are very close to one another) are provided in 
the SM sections 3 and 4. The main model was estimated in the Matlab® 
computing environment using HBE code provided by Train, although 
the R package Apollo, NLogit and Stata were all used in model evalua-
tions and comparative testing.8 Data and estimation code for replication 
are available at https://www.openicpsr.org/ openICPSR (ID# open-
icpsr-193063). 

5. RUM results 

Tables 3 and 4 display the main HBE results for our preferred mixed 
logit specification. For concision and interpretability, these tables report 
estimates of the population mean and median WTPs (i.e. βA

i /βprice
i for 

each non-price attribute A directly rather than statistics regarding the 
marginal utilities in βi. SM section 4 provides full estimates of under-
lying marginal utilities (i.e. population means and standard deviations 
for the βi’s). 

The tables also report the estimated fractions of the target pop-
ulations (fresh blueberry and orange juice consumers) that have zero 
marginal utility associated with each of the four production-related at-
tributes. Note that a probability mass at zero results directly from 
specifying truncated normal mixing distributions for these attributes, 
which also imposes sign restrictions on the marginal utilities (negative 
for GM plants and GDs, positive for organic and low v. high conventional 
spraying). This precludes the use of p-values (or a Bayesian analogue) 
for testing whether the means of these marginal utilities are significantly 
different from zero. However, in simpler conditional logit models as well 
as in mixed logit models with unrestricted support, all the attributes’ 
mean utilities are significantly different from zero (and of the expected 
sign). Again, the selection of the truncated normal in the preferred 
econometric specification was driven both by theory and primarily by 
statistical performance of the model for the purposes of policy analysis 
described in the next section. 

Overall, the RUM results point to greater consumer acceptance of GD 
insects versus GM food, as well as when compared to the intensification 
of conventional chemical-based pest control. For both fresh blueberries 
and orange juice, we find that consumers’ estimated mean reduction in 
WTP for products using gene drives is less than that associated with GM 
plants as well as that associated with high v. low levels of conventional 
pesticide spraying. These differences are statistically significant (i.e. 
95% interval on the posterior distribution of these differences does not 
contain zero). In addition, supermajorities of consumers (73% for 
blueberries, 75% for OJ) are estimated to have no disutility associated 
with GDs, with the 5th percentile of the posteriors being greater than 
50% for both products (i.e. from a classical perspective, we could reject 
the null that Pr

[
WTPGD

i = 0
]
≤ 0.5 at less than the 5% level). Larger 

estimated portions exhibit disutility associated with GM plants, as well 
as high v. low levels of conventional spraying. This estimated lack of 
disutility from GDs for a majority of consumers mechanically means that 
the median WTP estimate associated with GDs is zero for both products. 

8 https://eml.berkeley.edu/Software/abstracts/train1006mxlhb.html. 
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We also note that utility associated with conventional pest control obeys 
the ordering we would strongly expect, with the mean WTP for the 
organic attribute exceeding the mean WTP low conventional spraying 
which is itself positive (meaning greater WTP for the low-spray attribute 
versus high-spray omitted base level). 

Not shown in Tables 3 and 4 are results on the estimated interaction 
effects between GDs and the organic/low-spray attributes. As noted 
earlier, after testing models with these interaction effects (see SM Table 
S6) there is no evidence that these interactions provide any additional 
explanatory power in the RUM, which is the reason that for concision we 
exclude these effects from our main specification in Tables 3 and 4 and 

in the policy analysis below. However, this null result regarding the 
interaction effects is policy relevant. It implies that consumers’ WTP for 
a USDA-certified organic product does depend on whether the product 
was grown in the presence of GD insects. We do note that this null result 
only emerges from the RUM estimation when we allow for heteroge-
neous preferences in the model and when we allow the βi’s to be 
correlated between the attributes. As SM Table S6 shows, the condi-
tional logit (and the mixed logit, in the case of blueberries) results 
assuming uncorrelated βi imply these interaction effects are statistically 
significant. However, as the model comparison in SM Table S2 shows, 
allowing for correlation in the βi’s is one of the most consequential 
specification decisions improving model performance. The significant 
interaction effects arising only when correlation in the βi’s is suppressed 
suggests such findings of significance are spurious. In summary, the 
picture that clearly emerges regarding preferences towards GD insects is 
that a minority of surveyed consumers appear to care about these 
technologies being used in production of their food. 

6. Policy analysis 

Given the heterogeneous preferences estimated in the RUM 
regarding GDs, it is not obvious whether their deployment in the two 
case studies considered would increase or decrease aggregate consumer 
welfare. Recapitulating, a key distinction of GDs vis-à-vis currently 
deployed agricultural biotechnologies is their potential to biologically 
alter entire agricultural production systems, not just individual food 
products. If GDs spread ubiquitously through growing areas, then non- 
GD alternatives may be removed from consumers’ choice sets. This 
could harm consumers seeking to avoid these technologies, depending 
on the effects to food prices. Actual deployment scenarios may also differ 
according to how much control scientists and bioengineers exert over 
the technology to limit its area of spread and thereby retain non-GD 
alternatives’ availability to consumers (Jones et al., 2019). 

To model the potential aggregate consumer surplus (CS) impacts of 
these different policy scenarios, we use our estimated RUMs to evaluate 
three different policy scenarios: (a) a baseline scenario estimating the CS 
impacts of pest invasion in the two case studies, (b) a scenario modeling 
the CS effects of uncontrolled GD release that eliminates non-GD alter-
natives from the consumer choice set and (c) a scenario modeling the 
gain in CS to be had from the use of a controlled-v-uncontrolled GD that 
preserved availability of non-GD alternatives.9 

Given the mixed logit structure of the RUM, the surplus of a given 
choice set X =

{
Xj
}

j=0,⋯,J to an individual consumer with preferences βi 

can be estimated using the familiar ‘log-sum’ formula for such models 
(Small and Rosen, 1981): 

c(X |βi) =
log

(∑J
j=0expβ’

iXj

)

βprice
i

(5) 

Conditional on the RUM parameters Ω governing the βi’s distribution 
across the whole consumer population, aggregate CS is given by: 

CS
(
X

policy
,X

SQ
|Ω

)
=

∫
[
c
(
X

policy⃒⃒βi
)
− c

(
X

SQ⃒⃒βi
) ]

f (βi|Ω)dβi (6)  

where X policy,X SQ are the choice sets for the policy change and the SQ, 
respectively. Because HBE provides a posterior distribution for Ω instead 
of an MLE-based point estimate and covariance matrix, we obtain sta-
tistical central tendency and precision measures of aggregate CS by 
evaluating these with respect to the estimated distribution of CS

(
X policy,

Table 5 
Policy scenario analysis and consumer surplus (CS) impacts.   

Fresh Blueberries Orange Juice 

Pre-invasion status quo   
Conventional price $3.19 per pint $4.64 per half-gallon 
Organic price premium 40% 40% 
Conventional spray level Low 
Mean CS at baseline $6.48 per grocery trip $4.80 per grocery trip  

[$5.24, $8.11] [$3.89, $5.93] 
Pest invasion impacts   
Conventional price effects +0.04% +11.99% 
Organic price effects +7.0% +11.99% 
Conventional spray level High 
Mean ΔCS -$0.56 per grocery 

trip 
-$0.90 per grocery 
trip  

[-$0.79, -$0.39] [-$1.10, -$0.75] 
Uncontrolled GD release after pest invasion  
Price effects Back to pre-invasion baseline 
Conventional spray level Low 
Non-GD products available? No 
Fraction of consumers with ΔCS 
> 0 

75% 80%  

[68%, 81%] [75%, 86%] 
Mean ΔCS | ΔCS > 0 +$0.40 per grocery 

trip 
+$0.78 per grocery 
trip  

[$0.28, $0.55] [$0.65, $0.94] 
Mean ΔCS | ΔCS ≤ 0 -$4.10 per grocery 

trip 
-$3.08 per grocery 
trip  

[-$6.35, -$2.56] [-$4.83, -$1.91] 
Overall mean ΔCS -$0.72 per grocery 

trip 
+$0.03 per grocery 
trip  

[-$1.30, -$0.29] [-$0.38, $0.34] 
Controlled v. uncontrolled GD release  
Price effects Non-GD: prices at post-invasion levels  

GD: price return to pre-invasion levels  
Conventional spray level Non-GD conventional spray is high  

GD-conventional spray is low  
Mean CS gain v. uncontrolled GD +$1.61 per grocery 

trip 
+$0.94 per grocery 
trip  

[$1.18, $2.23] [$0.65, $1.35] 

Notes: CS statistics computed from respective HBE mixed logit model results 
summarized in Tables 3 and 4 based on equations (5) and (6). Bracketed in-
tervals are 95% intervals from posterior distributions of respective statistics. 
Units of CS estimates are per grocery trip for blueberry/OJ consumers. For ‘high’ 
and ‘low’ conventional spray definitions, see note in Table 1. 
Note: Plant Type Wording - “The plant and fruit are genetically modified to 
resist pest damage” [genetically modified; GM_Plant], “The plant and fruit are 
not genetically modified” [non-genetically modified]. Pest Management 
Regime wording – Blueberries: “Conventional insecticides applied only when 
pest populations are high” [low conventional spray; Low_Conv_Spray]; “Con-
ventional insecticides applied every five days for several weeks while fruit 
ripens” [high conventional spray; High_Conv_Spray] – Orange Juice: “Conven-
tional insecticides applied in the field 1–2 times per year” [low conventional 
spray; Low_Conv_Spray]; “Conventional insecticides applied in the field 11–14 
times per year” [high conventional spray; High_Conv_Spray]. Low v. high spray 
regimes represent predominate pest management regimes before and after the 
arrival of spotted-wing Drosophila (blueberries) or citrus psyllid (orange juice). 
See App****endix B for choice scenario examples. 

9 Note that scenario (c) necessarily results in a gain in CS relative to scenario 
(b) because (c) only increases consumer choice versus scenario (b), meaning 
that in our modeling no consumer can be left worse off by preserving non-GD 
alternatives in the choice versus uncontrolled deployment. 
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X SQ|Ω
)

produced from Ω’s posterior distribution.10 

Table 5 provides the details of each policy scenario and the estimated 
CS effects. The pre-invasion SQ consists of organic and conventional 
alternatives available for sale at the lower prices that prevailed prior to 
invasion by the pest. In addition, the conventional alternative has a low 
level of pesticide spraying in the SQ. The pre-invasion price for con-
ventional produce is assumed to be $3.19 per pint for fresh blueberries 
and $4.64 per half-gallon for OJ, which are simple averages of the price 
levels used in the DCE (themselves based roughly on prevailing market 
prices at the time of the data collection, FDC, 2020). The organic price 
premium for both products is assumed to be 40% (Lin et al. 2008). Based 
on these assumptions, and applying (5) to our RUM results, we retrieve 
mean CS estimates of $6.48 and $4.80 per grocery trip for fresh blue-
berry and OJ consumers respectively. 

The pest invasion impacts on CS under scenario (a) therefore consists 
of increased prices as well as higher levels of spraying in conventional 
production. For SWD invasion in fresh blueberries, we refer to Farns-
worth et al. (2017): These authors estimate that for fresh raspberry 

production, SWD invasion in California at first caused increases of 
5.84% and 6.9% in conventional and organic prices respectively. 
Eventually, price increases in conventional raspberries declined to 
0.04%, as growers learned to adapt to SWD (primarily by spraying in-
secticides more intensively), whereas organic prices increased slightly 
further to 7% over the pre-invasion SQ due to few options available to 
organic growers for adapting to SWD. Without direct estimates for fresh 
blueberries available, and given roughly comparable production sys-
tems and pest exposure, we use these same relative price effects in policy 
analysis. For OJ, we refer to Moss et al. (2014), who estimate that citrus 
greening spread caused a 12% increase in orange prices (they do not 
differentiate between conventional and organic effects). Applying 
equations (5) and (6) under these assumptions, our RUM results imply 
that SWD in fresh blueberries and citrus greening in OJ produced a mean 
$0.60 and $0.91 per grocery trip reduction in CS for US blueberry and 
OJ consumers respectively, or 9% and 20% respectively of baseline, pre- 
invasion CS. 

For scenario (b), to model the changes to CS resulting from uncon-
trolled GD deployment, we first set the status quo choice set as the post- 
invasion state, with increased prices and high levels of pesticide spray-
ing in conventional production. The choice set under the policy change 
is then specified as consisting of the conventional and organic products 
available at their pre-invasion price levels and pesticide spray level. 
However, all the alternatives (except for ‘no purchase’) under this policy 
change have the GD attribute activated. This policy change necessarily 
improves welfare for those who see no harm in the use of GDs in the 
production of their food. For those who do view GDs negatively, CS can 
be positive or negative depending on their relative preferences for price 
and pesticide reductions versus avoiding GDs. This means that the level 
of GD nonattendance in the DCE (73% for blueberries and 75% for OJ) 
provides a lower bound on the percentage of beneficiaries from an un-
controlled GD release. As Table 5 shows, 75% and 80% respectively are 
estimated to benefit from uncontrolled GD releases. The mean gain in CS 
for these beneficiaries is $0.40 and $0.78 respectively, whereas the loss 
in CS to those experiencing a reduction in welfare is $4.10 and $3.08.11 

The weighted sum of these impacts produces net loss of $0.72 for 
blueberry and a net gain of and $0.03 for OJ consumers, or − 11% and 
+1% of baseline, pre-invasion CS. Moreover, the 95% interval on the 
posterior distribution of these aggregate CS impacts does not include 
zero in the case of blueberries but does in the case of OJ. So, our RUM 
results imply that the uncontrolled GD release in scenario (b) would be 
welfare-reducing for SWD in blueberries, whereas for citrus greening in 
OJ the CS effects are statistically indistinguishable from zero. It is 
important to emphasize that these implications are both generated by 
comparing the minority of consumers who would experience a dispro-
portionate CS loss compared to supermajorities who experience a small 
CS gain. 

Fig. 2. Breakeven consumer surplus impacts from unlimited gene drive insect 
releases. Solid lines are sets of conventional and organic price increases from 
pest invasion that yield zero mean consumer surplus effects of unlimited gene 
drive releases. Shaded areas are 95% confidence sets. Circles are empirical 
estimates, from Farnsworth et al. (2017) in Panel (A) (open circle is early and 
closed circle is late-stage infestation) and from Moss et al. (2014) in Panel (B). 

10 The alternative to this procedure, if MLE had been used, would be to apply 
the Delta method or a parametric bootstrap on the statistic. 

11 There is a standard limitation of DCE estimates in measuring quantity ef-
fects. Implicit quantity-based assumptions in our CS analysis include: (a) that 
consumers do not shop more or less frequently as a result of the policy changes 
we analyze, (b) that consumers who are not regular consumers of the products 
studied are not at increased likelihood of becoming consumers of these products 
as a result of the policy changes, and (c) consumers do not change the quantities 
purchased as a result of the policy changes when making their product choices. 
Assumption (c) is perhaps the most consequential. We lack scanner data that 
would shed light on the variation in quantities/sizes purchased for fresh blue-
berries and OJ, and simply note from personal observation there is near uni-
formity in fresh blueberry and OJ (pint and half-gallon, respectively) container 
sizes at the wide range of supermarkets visited (with bulk retailers like Costco 
offering larger sized packages, but still mostly uniform within the store). And 
we have rarely seen consumers purchasing multiple units at a time. (It is also 
advantageous for our study that both products are highly perishable and thus 
are unlikely to involve purchases for long-term storage, except to the – likely 
small – extent that consumers purchase fresh blueberries to freeze them, given 
cheaper frozen retail options.). 
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Fig. 2 provides complementary analysis of scenario (b), by 
computing the combinations of conventional and organic pest/disease- 
induced price increases that would be necessary to make an uncon-
trolled GD release welfare-improving, based on our RUM results (the 
area below the 45◦ line is not plotted, on the assumption that organic 
pest-induced price increases would necessarily be greater than con-
ventional). The solid line in the figure is the welfare-neutral set of price 
increases. As the figure shows, a minimum pest-induced price increase 
for blueberries in excess of 35% would be needed for an uncontrolled GD 
to be welfare-improving. A 60% price increase needed for the 
improvement to be statistically significant. For OJ, price increases in 
excess of 10% would be needed for welfare improvement (and over 20% 
for statistical significance of the improvement). 

Finally, we turn in scenario (c) to the potential welfare gain of 
controlled v. uncontrolled GD release. In this scenario, the prices and 
spray levels of non-GD alternatives remain elevated at post-invasion 
levels, whereas the GD alternatives’ prices and spray levels return to 
pre-invasion levels just as in scenario (b). Because this scenario contains 
the same choice set as in scenario (b), but with the addition of non-GD 
products, this scenario does not decrease welfare for any consumer. As 
Table 5 shows, this scenario recovers a mean gain of $1.61 and $0.94 in 
CS for the two cases, or 25% and 20% respectively of baseline, pre- 
invasion CS. 

7. Conclusions 

This paper highlights a case study of how a prospective, landscape- 
scale agricultural biotechnology could affect consumer choice and 
welfare. With major global changes forecasted for agricultural produc-
tion systems over the coming decades because of climate and techno-
logical change (Rockström et al., 2017), this type of economic 
evaluation is likely to have an increasing role to play in policy analysis. 
More broadly, any technology aimed at increasing productivity at the 
expense of product variety has ambiguous effects on consumer welfare, 
requiring careful quantitative evaluation of who gains and loses – and by 
how much. 

This study’s limitations include all of those that normally apply to 
stated preference methods. Despite using best practices in the design, 
implementation, and analysis of the choice experiments that form the 
empirical basis for this paper, we cannot be certain that the estimated 
preferences would closely match those that would be revealed by actual 
purchase behavior (and indeed we would fully expect there to be some 
discrepancy between the two approaches). As such, revealed preference 
analysis of agricultural gene drives that were actually deployed would 
be important for further assessing the validity of the analysis here. 
However, it is worth emphasizing that revealed preference methods are 
of limited applicability in conducting welfare analysis of such technol-
ogies that can permanently and irreversibly alter production systems 
and product variety: To be useful for policy – namely, to inform the 
decision whether to permit deployment of the technology – welfare 
analysis must be conducted prior to actual market behavior being 
observed. In this regard, ex ante public and consumer consultations, 
using surveys, focus groups, and other methods, should be an integral 
part of these policy decisions. This paper demonstrates how ex ante 
welfare evaluation can inform these consultations. 

Funding 

This research was funded by the U.S. National Institute of Food and 
Agriculture grant number 2017-67030-26778 and HATCH project 
NC0250 and by the National Science Foundation award numbers 
1068676 and 1533990. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The authors acknowledge valuable input received on earlier versions 
of this work at the BIOECON 2017 and AAEA 2019 meetings, colleagues 
in the GES Center and CEnREP at NC State University, as well as detailed 
feedback received from three anonymous reviewers. 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.foodpol.2023.102529. 

References 

Asplen, M.K., et al., 2015. Invasion biology of spotted wing Drosophila (Drosophila 
suzukii): a global perspective and future priorities. J. Pest. Sci. 88, 469–494. https:// 
doi.org/10.1007/s10340-015-0681-z. 

Atalan-Helicke, N., 2015. The halal paradox: negotiating identity, religious values, and 
genetically engineered food in Turkey. Agric. Hum. Values 32 (4), 663–674. 

Balcombe, K., Burton, M., Rigby, D., 2011. Skew and attribute non-attendance within the 
Bayesian mixed logit model. J. Environ. Econ. Manage. 62 (3), 446–461. 

Baltzegar, J., et al., 2018. Anticipating complexity in the deployment of gene drive 
insects in agriculture. J. Respons. Innovat. 5 (sup1), S81–S97. https://doi.org/ 
10.1080/23299460.2017.1407910. 

Barrangou, R., 2014. Cas9 targeting and the CRISPR revolution. Science 344 (6185), 
707–708. https://doi.org/10.1126/science.1254401. 

Brown, Z.S., Jones, M.S., Mumford, J.D., 2019. Economic principles and concepts in 
area-wide genetic pest management. The Economics of Integrated Post Management 
of Insects. CABI 96–120. https://doi.org/10.1079/9781786393678.0096. 

Buchman, A., et al., 2018. Synthetically engineered medea gene drive system in the 
worldwide crop pest Drosophila suzukii. Proc. Natl. Acad. Sci. 115 (18), 4725–4730. 
https://doi.org/10.1073/pnas.1713139115. 

Burt, A., 2003. Site-specific selfish genes as tools for the control and genetic engineering 
of natural populations. Proc. R. Soc. Lond. B Biol. Sci. 270 (1518), 921–928. https:// 
doi.org/10.1098/rspb.2002.2319. 

Chaverra-Rodriguez, F.D., et al., 2020. Developing genetic tools to control Asian citrus 
psyllid. Available at: Citrograph Magazine 11 (1) https://citrusresearch.org/c 
itrograph. 

Costa-Font, M., Gil, J.M., Traill, W.B., 2008. Consumer acceptance, valuation of and 
attitudes towards genetically modified food: review and implications for food policy. 
Food Policy 33, 99–111. https://doi.org/10.1016/j.foodpol.2007.07.002. 

Culliney, T.W., 2014. “Crop Losses to Arthropods.” In Integrated Pest Management. 
Springer Netherlands, Dordrecht. pp. 201–225. Available at: https://doi.org/10. 
1007/978-94-007-7796-5_8 [Accessed October 21, 2016]. 

Cummings, R.G., Taylor, L.O., 1999. Unbiased value estimates for environmental goods: 
a cheap talk design for the contingent valuation method. Am. Econ. Rev. American 
Economic Association 649–665. https://doi.org/10.1257/aer.89.3.649. 

Deutsch, C.A., Tewksbury, J.J., Tigchelaar, M., Battisti, D.S., Merrill, S.C., Huey, R.B., 
Naylor, R.L., 2018. increase in crop losses to insect pests in a warming climate. 
Science 361 (6405), 916–919. 
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